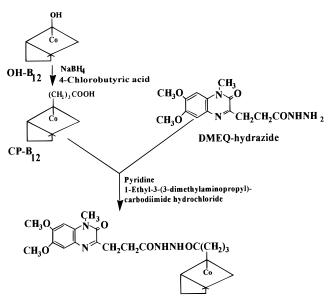
Method for Quantitation of Total Vitamin B_{12} in Foods Using a Highly Fluorescent Vitamin B_{12} Derivative

Fumio Watanabe,^{*,†} Katsuo Abe,[†] Shigeo Takenaka,[‡] Tomoyuki Fujita,[§] and Yoshihisa Nakano[§]

Department of Food and Nutrition, Kochi Women's University, Kochi 780, Japan, Laboratory of Nutrition and Food Science, Hagoromo-gakuen College, Sakai 592, Japan, and Department of Applied Biological Chemistry, Osaka Prefecture University, Sakai 593, Japan

A highly fluorescent vitamin B_{12} derivative was readily prepared with a fluorescent reagent [6,7-dimethoxy-1-methyl-2(1*H*)-quinoxaline-3-propionylcarboxylic acid hydrazide] specific for carboxylic acids. Hydroxovitamin B_{12} was reduced by NaBH₄, and then 4-chlorobutyric acid was added to form carboxypropyl vitamin B_{12} , which was labeled with the fluorescent reagent in the presence of carbodiimide. An assay for vitamin B_{12} with the fluorescent vitamin B_{12} derivative and hog intrinsic factor was devised. Vitamin B_{12} could be assayed over a range of 0.2–10 µg/L by this method, which was useful for vitamin B_{12} assay in foods.

Keywords: Vitamin B₁₂; cobalamin; fluorescence assay; intrinsic factor


INTRODUCTION

Historically, vitamin B_{12} (B_{12}) contents of foods have been determined by bioassay with B₁₂-requiring microorganisms, Escherichia coli, Lactobacillus leichmannii, Euglena gracilis Z, or Ochromonas malhamensis; the values obtained by the microbiological assay depend on the organism used (Schneider, 1987a). The assay procedures are technically difficult. In addition, radioisotope dilution (RID) assay with radiolabeled B₁₂ and hog intrinsic factor (IF), the most specific B₁₂-binding protein, has been used in the determination of B_{12} contents of foods because several kits for the RID assay are commercially available (Bennink and Ono, 1982). Recently, a chemiluminescent labeled B₁₂ derivative was used instead of a radioactive label for clinical assay of human blood. However, it is costly for workers in nutrition and food sciences to obtain specialized instruments and kits to assay B_{12} in foods.

In this paper we developed a highly fluorescent B_{12} derivative and used it to assay total B_{12} in foods.

MATERIALS AND METHODS

Materials. Hydroxo-B₁₂ (OH-B₁₂), cyano-B₁₂ (CN-B₁₂), cobinamide, and IF were obtained from Sigma Chemical Co. (St. Louis, MO). Silica gel 60 for column chromatography was obtained from Merck (Darmstadt, Germany). A reversedphase HPLC column (Wakosil-II 5C18RS, \emptyset 4.6 \times 150 mm; particle size, 5 μ m), 6,7-dimethoxy-1-methyl-2(1*H*)-quinoxaline-3-propionylcarboxylic acid (DMEQ) hydrazide, NaBH₄, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride, and HPLC grade methanol and distilled water were purchased from Wako Pure Chemical Industries, Ltd., (Osaka, Japan). 4-Chlorobutyric acid and D₂O were obtained from Aldrich Chemical Co. Inc. (Milwaukee, WI). Amberlite XAD-4 was obtained from Japan Organo Co. (Tokyo, Japan). A prepacked gel filtration column (Econo-pac 10DG) was purchased from Bio-Rad Laboratories (Richmond, CA). All other reagents used were of the highest purity commercially avail-

DMEQ-labeled B₁₂

Figure 1. Outline of preparation of DMEQ-labeled B₁₂.

able. Raw beef and pork and pasteurized cow's milk were purchased from a local market in Kochi-city, Japan. A Shimadzu (Kyoto, Japan) UV–visible spectrophotometer (UV-1600) was used for measuring absorbance of B₁₂ analogues. A Shimadzu HPLC apparatus (LC6A pump, RE500LCA fluorescence spectrometer, UV-1600 UV–visible spectrophotometer, CTO-6A column oven, C-RA data processor) was used for purification of the DMEQ-labeled B₁₂. A Shimadzu spectrofluorophotometer (RF-5000), a Hitachi (Tokyo, Japan) spectrophotometer (200-10), and an automated chemiluminescent B₁₂ analyzer ACS-180 (Chiron Diagnostics, East Walpole, MA) were used for B₁₂ assay.

Preparation of Fluorescent Vitamin B₁₂ **Derivative.** The preparation of the fluorescent (DMEQ-labeled) B₁₂ derivative is summarized in Figure 1. OH-B₁₂ was reduced by NaBH₄, and then 4-chlorobutyric acid was added to form carboxypropyl-B₁₂ (CP-B₁₂) as described by Sato et al. (1978); in brief, OH-B₁₂ (0.0138 g) was dissolved in 5 mL of distilled water and bubbled with N₂ gas for 20 min. NaBH₄ (40 mg) was added to the solution, which was further bubbled with N₂ gas for 10 min. 4-Chlorobutyric acid (0.012 g) was added to the solution, which then was neutralized by the addition of 1 mol/L HCl to pH 6–7. The solution was put on a column

^{*} Author to whom correspondence should be addressed (telephone and fax +81-888-31-2876; e-mail watanabe@cc.kochi-wu.ac.jp).

[†] Kochi Women's University.

[‡] Hagoromo-gakuen College.

[§] Osaka Prefecture University.

 $(25 \times 50 \text{ mm})$ of Amberlite XAD-4 equilibrated with acetic acid solution (water/acetic acid = 100:1) and washed with 200 mL of the same solution. The reaction products were eluted with 150 mL of 80% (v/v) ethanol, evaporated to dryness, and dissolved in 2 mL of 1-butanol/2-propanol/water (10:7:10). This solution was put on a column (15×150 mm) of silica gel 60 equilibrated with 1-butanol/2-propanol/water (10:7:10) and eluted with the same solution to remove OH-B₁₂, which binds with the top of the gel. The column eluate was collected at 4 mL with a Bio-Rad Laboratories fraction collector (Model 2110). Red-colored fractions were combined, evaporated to dryness, and dissolved with distilled water. All procedures were done in the dark. The concentration of the $CP-B_{12}$ prepared was calculated by measuring the absorbance of aqua- B_{12} (AqB₁₂) at 527 nm [$\epsilon = 8.5 \times 10^3$ (mol/L)⁻·cm⁻¹] (Schneider, 1987b) after CP-B₁₂ was photolyzed completely to form AqB₁₂ by a tungsten lamp (100 W) for 30 min. Aq- and OH-B₁₂ are interconvertible in solution depending on pH; below pH 8.0, AqB_{12} tends to predominate over $OH-B_{12}$ at equilibrium (Schneider, 1987b).

The CP-B₁₂ was labeled with the fluorescence reagent (DMEQ-hydrazide) specific for carboxylic acids according to the method of Yamaguchi et al. (1990); in brief, to 100 μ L of 5 mmol/L CP-B₁₂ solution were added 50 μ L each of 2 mol/L 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride and 10% (v/v) pyridine and 100 μ L of 4.9 mmol/L DMEQ-hydrazide/N,N-dimethylformamide solution. The mixture was gently stirred for 30 min at 30 °C. The mixture was put on a column (25 × 50 mm) of Amberlite XAD-4 equilibrated with acetic acid solution (water/acetic acid = 100:1) and washed with 200 mL of the same solution. The DMEQ-labeled B₁₂ was eluted with 150 mL of 80% (v/v) ethanol, evaporated to dryness, and dissolved in 1.0 mL of distilled water. All procedures were done in the dark.

The DMEQ-labeled B₁₂ formed was isolated with a Shimadzu HPLC apparatus (LC6A pump, RE500LCA fluorescence spectrometer, UV-1600 UV-visible spectrophotometer, CTO-6A column oven, C-RA data processor). The solution was put on a reversed-phase HPLC column (Wakosil-II 5C18RS, \emptyset 4.6 × 150 mm; particle size, 5 µm) equilibrated with 20% (v/v) methanol solution containing 1% (v/v) acetic acid at 35 °C at a flow rate of 1 mL/min. The DMEQ-labeled B₁₂ was eluted with a linear gradient (40 mL) of 20–70% (v/v) methanol in the same 1% (v/v) acetic acid solution.

Fluorescence intensities of DMEQ-labeled compounds were monitored at an extinction wavelength of 365 nm and an emission wavelength of 447 nm. Other B₁₂ analogues were monitored at an absorbance of 527 nm. The fluorescent compound and B₁₂ were coeluted in a peak with retention time of 24 min. Retention times of authentic DMEQ-hydrazide and prepared CP-B₁₂ were 16 and 19 min, respectively. The peak fractions (1 mL) with retention time of 24 min were combined, evaporated to dryness, and dissolved in 1.0 mL of distilled water. Concentration of the DMEQ-labeled B₁₂ prepared was calculated by measuring the absorbance of AqB₁₂ at 527 nm [$\epsilon = 8.5 \times 10^3 \text{ (mol/L)}^{-1} \cdot \text{cm}^{-1}$] after the DMEQ-labeled B₁₂ was photolyzed completely to form AqB₁₂ by the tungsten lamp (100 W) for 30 min.

¹**H-NMR Spectra.** The spectra were measured on a JEOL (Tokyo, Japan) JNM-A500 at 500 MHz in D₂O; HDO was the internal reference: chemical shifts with δ (HDO) = 4.71 ppm. ¹H-NMR spectrum of the DMEQ-labeled B₁₂ in D₂O: δ 7.33 (1H, s), 7.03 (2H, s), 6.80 (1H, s), 6.12 (1H, d, J = 2.4 Hz), 6.06 (1H, s), 5.83 (1H, s), 3.95 (3H, s), 3.88 (3H, s), 3.73 (3H, s), 3.06 (2H, t, J = 6.7 Hz), 2.77 (2H, t, J = 6.7 Hz), 2.16 (3H, s), 2.10 (3H, s), 2.08 (3H, s), 2.07 (3H, s), 1.48 (3H, s), 1.29 (3H, s), 1.28 (3H, s), 1.09 (3H, d, J = 6.1 Hz), 0.94 (3H, s), 0.86 (3H, s), and 0.37 (3H, s).

Extraction of Vitamin B₁₂. Ten grans each of raw beef and pork was homogenized in 50 mL of distilled water using a universal homogenizer (Nihon Seiki Seisakusho Co., Tokyo, Japan). Total B₁₂ was extracted from the homogenates by the method of boiling with KCN at acid pH (Frenkel et al., 1980); specifically, 10 mL of 0.5 mol/L acetate buffer, pH 4.8, and 20 mg of KCN were added to the beef and pork homogenates, which were boiled for 30 min at 98 °C in the dark. These homogenates were centrifuged at 10000g for 10 min. The supernatant was used for the B_{12} assay. In the case of cow's milk, 100 mL of 0.2 mol/L acetate buffer, pH 4.8, and 20 mg of KCN were added to 100 mL of the milk, boiled for 30 min at 98 °C in the dark, and then centrifuged at 10000g for 10 min. The supernatant was used for the B_{12} assay.

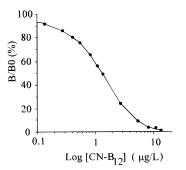
Assay of Vitamin B₁₂. The assay mixture (1.0 mL) contained 10 mmol/L potassium phosphate buffer, pH 7.0, 1.4 ng of the DMEQ-labeled B₁₂, authentic CN-B₁₂ or sample (0-12 ng), and 1 unit of IF. The IF used was preincubated with 30 ng of cobinamide for 30 min at room temperature to remove the B₁₂ binding by non-IF binder contaminants in the reagent. The mixture was incubated for 10 min at room temperature in the dark, immediately put on a prepacked gel filtration column (Econo-pac 10DG, Bio-Rad Laboratories), which was equilibrated with 10 mmol/L potassium phosphate buffer, pH 7.0, containing 0.1 mol/L KCl, and eluted with 4.0 mL of the same buffer. The column eluant was collected, and its fluorescence intensity was measured at an excitation wavelength of 365 nm and an emission wavelength of 447 nm with a Shimadzu spectrofluorophotometer (RF-5000). The amount of the DMEQ-labeled B_{12} bound to IF was calculated by subtracting fluorescence intensity in the absence of IF (control) from that in the presence of IF. A best fit standard curve for the B₁₂ assay was drawn with GraphPad PRISM 2.0 (Graph-Pad Software, San Diego, CA).

 B_{12} was also assayed by the bioassay with *Lactobacillus leichmannii* ATCC 7830 and a B_{12} assay medium (Nissui, Tokyo, Japan) according to the manufacturer's instructions, and by an automated chemiluminescent B_{12} analyzer ACS-180 (Chiron Diagnostics). The above B_{12} extracts were diluted with distilled water up to B_{12} concentration ranges of 0.01-0.2 and $0.05-2~\mu g/L$ for the microbiological and chemiluminescent assay methods, respectively.

Statistical analysis was performed using GB-STAT 5.4 (Dynamic Microsystems, Inc., Silver Spring, MD). One-way ANOVA was used with post-hoc Tukey/Kramer procedure. Differences were considered significant if P < 0.01.

RESULTS AND DISCUSSION

Preparation of a Fluorescent B₁₂ **Derivative.** The mammalian B₁₂-binding protein, IF, specifically recognizes the structure of the B₁₂ molecule but is less selective with regard to substitution of the β -ligand of B₁₂ (Gräsbeck, 1967). Thus, a B₁₂ derivative with the fluorescent (DMEQ) moiety as the β -ligand was prepared and applied to total B₁₂ assay in foods.


More than 96% of OH-B₁₂ was converted to CP-B₁₂, which was labeled with DMEQ-hydrazide in a yield of about 50%. The DMEQ-labeled B₁₂ had a high quantum efficiency; 1 μ g/L of the B₁₂ solution showed fluorescence intensity of 0.1. In the ¹H-NMR spectrum of the DMEQlabeled B_{12} , two aromatic protons (δ 7.03 and 6.80), two methoxy groups (δ 3.95 and 3.88), one singlet methyl (δ 3.73), and two methylene groups [δ 3.06 (t, J = 6.7Hz) and 2.77 (t, J = 6.7 Hz)] were observed; these signals show the presence of the DMEQ moiety in the fluorescent B₁₂ derivative. The photolytic cleavage of the Co-C bond in alkyl-B₁₂ has been reported; under aerobic conditions alkyl-B₁₂ is converted to OH-B₁₂ or AqB₁₂ (Schneider, 1987c). Each absorption peak of CP- B_{12} (510 nm) and DMEQ-labeled B_{12} (498 nm) at visible region was changed to that of AqB_{12} (527 nm) by exposure to a tungsten lamp (100 W) for 30 min (data not shown), suggesting that CP and DMEQ groups are in the β -ligand of the prepared B₁₂ derivatives, respectively. The results indicate that DMEQ-hydrazide is a highly sensitive fluorescence reagent and suitable for preparation of a fluorescent B_{12} derivative.

The DMEQ-labeled B_{12} was slightly unstable in solution even if stored at -40 °C in the dark; it was

 Table 1. Vitamin B₁₂ Contents of Foods by the Fluorescence Assay

	vitamin B_{12} content ^a (μ g/100 g)			
	fluorescence assay	chemiluminescence assay	bioassay	reported ^b
beef	$4.89 \pm 0.29^{ m a}$ (6)	$2.54 \pm 0.01^{ m b}$ (4)	$3.15\pm0.31^{ m c}$ (3)	2-8
pork	$1.05 \pm 0.17^{ m a}$ (6)	$0.70 \pm 0.11^{ m b}$ (4)	$1.85 \pm 0.14^{ m c}$ (3)	0.1 - 5
cow's milk	$0.51 \pm 0.03^{ m a}$ (6)	$0.82\pm 0.02^{ m b}$ (4)	$0.86 \pm 0.06^{ ext{b}}$ (3)	0.2 - 0.6

^{*a*} All values obtained represent mean \pm SD. Numbers of experiments are given in parentheses. Different letters denote significant differences (*P* < 0.01). Detailed procedures were described in the text. ^{*b*} Cited in Schneider (1987a).

Figure 2. Standard curve for the assay. Detailed procedures were described in the text.

decomposed gradually to form AqB_{12} . When one needs it for the B_{12} assay, an aliquot of CP- B_{12} stock solution (stable in the dark) can be reacted with DMEQ-hydrazide on a small scale and then purified by HPLC. The fluorescent B_{12} derivative could be readily prepared for a couple of days. The newly prepared DMEQ-labeled B_{12} should be used within 2–3 weeks.

Assay of B_{12} Contents in Foods Using the Fluorescent B_{12} Derivative. The principle of the fluorescence dilution assay is that the B_{12} present in the sample or standard B_{12} as a calibrator competes with the fluorescent B_{12} derivative in binding to a B_{12} -binding protein. Calibration standards were done with IF by dividing the fluorescence intensity of each of the standards (*B*) by that of the zero standard (B_0). The calculated B/B_0 (%) for each standard B_{12} was plotted with log [CN- B_{12}] on the *x*-axis and B/B_0 (%) on the *y*-axis, and then a best-fit curve line between the plotted points was drawn (Figure 2). The level of B_{12} in each of the samples would be determined with the plot, over a range of $0.2-10 \mu g/L$.

Although the sensitivity of this method was slightly lower than that of the RID assay ($0.05-2 \ \mu g/L$) or *Lactobacillus* bioassay ($0.01-0.2 \ \mu g/L$) (Schneider, 1987c), this fluorescence method would be suitable for assay of B₁₂ in samples (such as foods) that are obtained in large quantities and/or contain a large amount of B₁₂ because food extracts must be diluted significantly for B₁₂ assay with both microbiological and RID methods.

 B_{12} contents of some foods were assayed by this fluorescence method and then compared with the values obtained by the chemiluminescence method and *Lactobacillus* bioassay (Table 1). Although there were significant differences among B_{12} contents of beef, pork, and cow's milk determined according to the three assay methods, the values obtained by the fluorescence method were similar to the values obtained by both the chemiluminescence and microbiological assays and also to the data reported previously (Schneider, 1987a).

Between-run imprecisions of the three methods were similar; coefficients of variation varied from 7.0 to 10.0% using the microbiological method, from 0.7 to 16.9% using the chemiluminescence method, and from 4.2 to 16.3% using the fluorescence method. The observed correlation coefficients ranged from 0.73 to 0.8%. The correlations were slightly weak among these methods, which may be due to the few samples (n = 9) tested.

By the use of this fluorescence method, B_{12} contents in foods can be readily assayed without specialized instruments and/or sterile techniques for culture of the B_{12} -requring microorganisms. Running cost of this method would be lower than that of the RID or chemiluminescence assay method. These results indicate that this fluorescence method is a useful nonradioisotopic method for assaying total B_{12} of foods in nonspecialized laboratories.

ACKNOWLEDGMENT

We thank Dr. K. Sato, Hiroshima University, Japan, for the kind gift of *Lactobacillus leichmannii* ATCC 7830.

LITERATURE CITED

- Bennink, M. R.; Ono, K. Vitamin B12, E and D content of raw and cooked beef. J. Food Sci. **1982**, 47, 1786–1792.
- Frenkel, E. P.; Prough, R.; Kitchens, R. L. Measurement of tissue vitamin B_{12} by radioisotopic competitive inhibition assay and quantitation of tissue cobalamin fractions. *Methods Enzymol.* **1980**, *67*, 31–40.
- Gräsbeck, R. Intrinsic factor and the transcobalamins with reflections on the general function and evolution of soluble transport proteins. *Scand. J. Clin. Lab. Invest.* **1967**, *Suppl. 95*, 7–18.
- Sato, K.; Hiei, E.; Shimizu, S.; Abeles, R. H. Affinity chromatography of N⁵-methyltetrahydrofolate-homocyteine methyltransferase on a cobalamin-sepharose. *FEBS Lett.* **1978**, *85*, 73–76.
- Schneider, Z. The occurrence and distribution of corrinoids. In *Comprehensive* B₁₂; Schneider, Z., Stroinski, A., Eds.; de Gruyter: Berlin, 1987a; pp 157–223.
- Schneider, Z. Chemistry of cobalamin and related compounds. In *Comprehensive B₁₂*; Schneider, Z., Stroinski, A., Eds.; de Gruyter: Berlin, 1987b; pp 17–92.
- Schneider, Z. Purification and estimation of vitamin B₁₂. In *Comprehensive B₁₂*, Schneider, Z., Stroinski, A., Eds.; de Gruyter: Berlin, 1987c; pp 111–155.
- Yamaguchi, M.; Iwata, T.; Inoue, K.; Hara, S.; Nakamura, M. 6,7-Dimethoxyl-1-methyl-2(1*H*)-quinoxalinone-3-propionylcarboxylic acid hydrazide: a highly sensitive fluorescence derivatisation reagent for carboxylic acids in high-performance liquid chromatography. Analyst **1990**, 115, 1363– 1366.

Received for review April 14, 1997. Accepted August 19, 1997.[∞] This study was supported in part by a research fund (Koenkai Gakujyutsu Kenkyu Shuppan Jigyo) of Kochi Women's University (F.W).

JF970313M

[®] Abstract published in *Advance ACS Abstracts*, October 1, 1997.